Sua ação antimicrobiana depende altamente do grupo hidroxila dos terpenóides fenólicos e da presença de elétrons deslocalizados, que frequentemente determinam o nível de sua atividade antimicrobiana em diferentes bactérias.
Os componentes bioativos dos óleos essenciais têm sido identificados e a pesquisa tem avançado para elucidar os mecanismos subjacentes às funções desses compostos no organismo animal. Clique aqui para compreender o mecanismo de ação dos óleos essenciais!
Suínos jovens são susceptíveis a vários agentes estressores, incluindo patógenos bacterianos, estresse oxidativo e inflamação, levando a redução do desempenho, altas taxas de mortalidade e morbidade e comprometimento do bem-estar animal. Os antibióticos promotores de crescimento (APC) têm sido amplamente usados em dietas para suínos, especialmente em dietas pós-desmame, a fim controlar a incidência de diarreia pós-desmame e promover melhorias no desempenho.
O consumo mundial de antimicrobianos na produção animal foi estimado em 63.151 t em 2010 com uma tendência crescente e o consumo anual de antimicrobianos por quilograma de peso corporal é de 148 mg / kg para suínos. Essa prática pode levar à disseminação de patógenos bacterianos resistentes a antimicrobianos em suínos e humanos, representando uma ameaça significativa à saúde pública.
Tal fato levou à proibição do uso de APC na produção animal na União Europeia desde 2006. A Food and Drug Administration dos EUA impôs restrições ao uso de antibióticos na produção animal em dezembro de 2016 e a Health Canada proibiu o uso de antibióticos em dietas para animais em dezembro de 2017.
É fundamental desenvolver alternativas antibióticas econômicas para garantir a sustentabilidade a longo prazo da produção de suínos. Ácidos orgânicos, enzimas, probióticos, peptídeos antimicrobianos, ácidos graxos de cadeia média e óleos essenciais são reconhecidos como alternativas promissoras para a substituição de antibióticos em doses subterapêuticas nas rações.
Os óleos essenciais são compostos bioativos naturais derivados de plantas e têm efeitos positivos no crescimento e na saúde dos animais. Devido às propriedades antimicrobianas, antiinflamatórias e antioxidantes, os óleos essenciais têm sido amplamente utilizados como medicamentos tradicionais para melhorar a saúde ou curar doenças em humanos. Os componentes bioativos dos óleos essenciais têm sido identificados e a pesquisa tem avançado para elucidar os mecanismos subjacentes às funções desses compostos no organismo animal, e o seu potencial efeito para substituição a antibióticos.
Entretanto, a aplicação de óleos essenciais na ração tem se baseado principalmente nos efeitos antimicrobianos. Além disso, a concentração inibitória mínima (CIM) da maioria dos óleos essenciais é muito mais alta do que os níveis aceitáveis na indústria animal em termos de custo-benefício e palatabilidade. Além dos resultados variados e mecanismos pouco claros, ainda existem vários outros desafios no uso de óleos essenciais em rações animais, incluindo efeitos tóxicos, preocupações regulatórias e altos custos de inclusão. Portanto, torna-se indispensável investigar os efeitos específicos e os locais-alvo (seja o hospedeiro animal ou seu microbioma) de compostos individuais em óleos essenciais para facilitar sua aplicação na produção de suínos.
Os óleos essenciais são líquidos aromáticos, voláteis e oleosos extraídos de materiais vegetais, como sementes, flores, folhas, botões, galhos, ervas, cascas, madeira, frutas e raízes. Os óleos essenciais são uma mistura de compostos complexos que podem variar em suas composições químicas e concentrações individuais. Esses constituintes de óleos essenciais, como carvacrol e timol presentes no tomilho, caracterizam-se pelas funções antimicrobianas de amplo espectro contra bactérias Gram-negativas e Gram-positivas, fungos e leveduras.
Os óleos essenciais têm maior efeito contra patógenos bacterianos Gram-positivos do que Gram-negativos porque a entrada de compostos hidrofóbicos através das estruturas de lipopolissacarídeos das bactérias Gram-negativas é limitada devido à membrana externa que reveste a parede celular. Vários pesquisadores constataram que os óleos essenciais são alternativas aos antibióticos por possuírem propriedades antimicrobianas, antiinflamatórias, antioxidantes e coccidiostáticas.
Os óleos essenciais aumentam a digestibilidade e a imunidade, promovem a saúde intestinal ao minimizar o efeito das bactérias patogênicas e controlam o odor e a emissão de amônia.
Os óleos essenciais têm 2 classes principais de compostos:
Os terpenos são subdivididos em relação ao número de blocos de construção de carbono 5 e conhecidos como unidades de isopreno com mono (C10H6), sesqui (C15H24) e diterpenos (C20H32). Existem algumas fontes diferentes de terpenos representados pela existência ou inexistência de estruturas em anel, ligações duplas e adição de oxigênio ou presença de estereoquímica. Estima-se que existam mais de 1.000 monoterpenos e mais de 3.000 sesquiterpenos com base em vários pesquisadores. Existem apenas 50 fenilpropenos descobertos. Os óleos essenciais comumente usados na produção animal são: carvacrol, timol, citral, eugenol e cinamaldeído.
Embora o carvacrol e o timol tenham vários locais-alvo nas células bacterianas, seu principal local-alvo é a parede celular da bactéria. O mecanismo de ação antimicrobiano ocorre de duas maneira:
A posição dos grupos funcionais (por exemplo, hidroxila ou alquila) em óleos essenciais desempenha papéis fundamentais na ação antimicrobiana de óleos essenciais. Embora o timol e o carvacrol tenham efeitos antimicrobianos semelhantes, eles têm efeitos diferentes nas bactérias Gram + ou Gram – com base nas posições de um ou mais grupos funcionais no timol e no carvacrol.
Sua ação antimicrobiana depende altamente do grupo hidroxila dos terpenóides fenólicos e da presença de elétrons deslocalizados, que frequentemente determinam o nível de sua atividade antimicrobiana em diferentes bactérias.
Tanto o carvacrol quanto o timol possuem propriedades de liberação de lipopolissacarídeos que os fazem ter propriedades antimicrobianas superiores contra algumas bactérias Gram – quando comparados a outros óleos essenciais. Outra hipótese é o modelo de trocador de prótons e o carvacrol pode atuar como um transportador transmembrana, trocando seu próton hidroxila por um íon de potássio, resultando na dissipação do gradiente de pH e do potencial elétrico sobre a membrana, redução da força próton-motriz e depleção do ATP. A perda de potássio também pode causar problemas, pois atua na ativação de várias enzimas citoplasmáticas, na manutenção da pressão osmótica e na regulação do pH intracelular.
De um modo geral, as bactérias podem usar bombas iônicas para combater esses efeitos e nem sempre a morte celular ocorre, mas grandes quantidades de energia são necessárias para essa função e o crescimento bacteriano fica comprometido.
O eugenol e o cinamaldeído também possuem um grupo funcional fenólico e suas atividades antimicrobianas são relacionadas aos efeitos da membrana e à geração de energia. Acredita-se que o grupo hidroxila do eugenol e o grupo carbonila do cinamaldeído se ligam às proteínas, inibindo a ação dos aminoácidos descarboxilases em E. aerogenes. Portanto, o principal mecanismo de ação do timol, carvacrol, eugenol e cinamaldeído está relacionado aos seus efeitos nas membranas citoplasmáticas e no metabolismo energético.
Fonte: https://www.sciencedirect.com/science/article/pii/S2405654517301233.
Inscreva-se agora para a revista técnica de suinocultura
AUTORES
Principais doenças entéricas em suínos nas fases de creche e terminação
Keila Catarina Prior Lauren Ventura Parisotto Marcos Antônio Zanella Morés Marina Paula Lorenzett Suzana Satomi KuchiishiInsensibilização de suínos: os diferentes métodos e suas particularidades
Luana Torres da RochaComo a via êntero-mamária nas matrizes suínas modula a microbiota dos leitões?
Pedro Henrique Pereira Roberta Pinheiro dos Santos Vinícius de Souza Cantarelli Ygor Henrique de PaulaUso do sorgo na alimentação de suínos
Ana Paula L. Brustolini Ednilson F. Araujo Fabiano B.S. Araujo Gabriel C. Rocha Maykelly S. GomesFornecimento de ninho: muito além do atendimento à instrução normativa
Bruno Bracco Donatelli Muro César Augusto Pospissil Garbossa Marcos Vinicius Batista Nicolino Matheus Saliba Monteiro Roberta Yukari HoshinoFunção ovariana: Estabelecendo a vida reprodutiva da fêmea suína – Parte II
Dayanne Kelly Oliveira Pires Fernanda Radicchi Campos Lobato de Almeida Isadora Maria Sátiro de Oliveira João Vitor Lopes Ferreira José Andrés Nivia Riveros Luisa Ladeia Ledo Stephanny Rodrigues RainhaVacinas autógenas na suinocultura – Parte II
Ana Paula Bastos Luizinho Caron Vanessa HaachDanBred Brasil: novo salto em melhoramento genético aumenta desempenho produtivo e eficiência na suinocultura brasileira
Geraldo ShukuriPerformance de suínos em crescimento e terminação com uso de aditivo fitobiótico-prebiótico
Equipe técnica VetancoSIAVS: ponto de encontro da proteína animal para o mundo
O uso do creep feeding e o desafio de se criar leitões saudáveis e produtivos
Felipe Norberto Alves FerreiraAlimentando o futuro das produções animais, Biochem apresenta soluções inovadoras para uma nutrição de precisão
Equipe Técnica Biochem Brasil