No hay términos de la taxonomía "paises" asociados a este post.
Por qué se usan y cómo funcionan Hace mucho tiempo que los ácidos orgánicos se usan en alimentación animal para la conservación del pienso y su protección contra su deterioro. Los ácidos orgánicos principalmente reducen el pH del pienso y a su vez modulan los procesos fisiológicos propios de la digestión de los nutrientes en […]
Hace mucho tiempo que los ácidos orgánicos se usan en alimentación animal para la conservación del pienso y su protección contra su deterioro.
El Dr. Arttur Ilmari Virtanen hace más de 80 años ya comprobó los efectos positivos del ácido fórmico en sus estudios sobre la conservación de los piensos ricos en proteínas y el contenido vitamínico de la leche de vaca durante el invierno. Este científico recibió en 1945 el premio Nobel de Química por sus trabajos científicos, lo que facilitó el camino a todo un grupo de sustancias para que se hayan ido incorporando a múltiples campos de la alimentación animal.
Los ácidos orgánicos están formados por uno o más grupos carboxilo (R-COOH) como grupo funcional , pudiéndoles denominar también ácidos carboxílicos (tabla 1). En comparación con los ácidos inorgánicos, como el clorhídrico, el fosfórico o el sulfúrico, los ácidos orgánicos se consideran ácidos relativamente débiles o blandos.
Tabla 1: Propiedades de algunos ácidos orgánicos
El ácido fórmico, con un peso molecular de aproximadamente 46 gramos por mol, es el ácido orgánico más pequeño, que aparte del grupo carboxilo presenta un único átomo de hidrógeno como residuo. Mientras que la mayoría de ácidos cuentan con un grupo carboxilo (ácidos monocarboxilícos), el ácido málico, por ejemplo, presenta dos (ácido dicarboxilíco) y el ácido cítrico tres (ácido tricarboxilíco).
La acidificación (reducción del pH) de los ácidos orgánicos en solución acuosa se produce mediante la disociación (separación) de los grupos carboxilo y la liberación de iones H+.
De este modo, son tres los criterios los que determinan básicamente la capacidad de los ácidos orgánicos de reducir el pH en el pienso y en el tubo digestivo del ganado :
De este modo, entre otras cosas, el ácido fórmico tiene un mayor efecto reductor del pH en comparación, por ejemplo, con el ácido láctico, porque el peso molecular del ácido láctico duplica casi el del ácido fórmico, presentando cada uno de estos compuestos un grupo carboxilo.
Además del peso molecular y el número de grupos carboxilo, para la acidez es decisiva la constante de disociación o pKa. El valor pKa indica el pH al que se halla disociado el 50 % de un grupo carboxilo mientras el 50 % restante no lo está, y es específico para cada ácido orgánico (figura 1).
Los compuestos con varios grupos carboxilo como el ácido málico y el ácido cítrico cuentan con varias constantes de disociación.
Figura 1: Proporción de moléculas disociadas y no disociadas de ácido fórmico y ácido propiónico en función del pH
La mayor acidez del ácido fórmico en comparación con el ácido propiónico se debe, además de al menor peso molecular, al valor pKa claramente inferior (figura 2).
Figura 2: Efecto reductor del pH de algunos ácidos orgánicos en el pienso para pollos broiler
Los ácidos orgánicos actúan como conservantes de los piensos aunque , al mismo tiempo, gracias a sus propiedades antimicrobianas, inhiben el crecimiento de determinados gérmenes.
Los ácidos orgánicos se emplean en la alimentación animal debido a su marcado efecto antimicrobiano. Si bien no son antibióticos, son capaces de inhibir e impedir el crecimiento y la proliferación de bacterias patógenas, así como de hongos y levaduras no deseados.
El concepto actual sobre la acción antimicrobiana de los ácidos orgánicos se basa principalmente en tres efectos distintos (figura 3). Por un lado, la acidez de los ácidos orgánicos reduce el pH hasta el punto que imposibilita o limita mucho el crecimiento y la multiplicación de muchos microorganismos patógenos o indeseados , pero además, las moléculas ácidas no disociadas son lipófilas y capaces de atravesar la membrana celular de bacterias patógenas como, por ejemplo, las salmonelas.
Figura 3: Acción antimicrobiana de los ácidos orgánicos
Si bien los ácidos orgánicos llevan empleándose en la alimentación animal desde hace muchos años, no se conocen resistencias.
Figura 4: Crecimiento microbiano
El efecto específico de los diversos ácidos orgánicos frente a los microorganismos relevantes para la producción o la alimentación animal puede determinarse y compararse con la ayuda de un ensayo de laboratorio relativamente sencillo procedente de la biología.
En este ensayo se determina la Concentración Inhibitoria Mínima (siglas en inglés, Minimal Inhibitory Concentration o MIC) que es la concentración de una sustancia que, en condiciones estandarizadas, basta para inhibir el crecimiento y la proliferación de un microorganismo.
Figura 5: Concentración inhibitoria mínima (MIC) de algunos ácidos orgánicos para diferentes microorganismos
Mientras que el ácido fórmico es especialmente efectivo frente a bacterias patógenas como Escherichia coli o Staphylococcus aureus y levaduras indeseadas como Candida albicans, el ácido propiónico le supera relativamente frente a hongos como Aspergillus flavus, que puede producir aflatoxina.
Ello permite deducir que para combatir las bacterias patógenas, como Salmonella, E.coli, o las levaduras, es preferible emplear ácido fórmico puro o mezclas de ácidos con una elevada proporción de ácido fórmico.
En cambio, para la conservación de piensos en los que los hongos tengan un papel importante, conviene utilizar ácido propiónico puro o mezclas de ácidos con una elevada proporción de este ácido.
Las concentraciones determinadas en el ensayo de MIC solo permiten deducir una jerarquía de los ácidos orgánicos en relación con su efecto antimicrobiano. Estas concentraciones de ácido determinadas en el laboratorio no son adecuadas para su aplicación práctica en el pienso.
Dado su efecto antimicrobiano, los ácidos orgánicos encuentran aplicación en cuatro campos principales dentro de la alimentación animal:
Piensos simples, piensos compuestos, ensilados
Salmonella,Escherichia coli, Clostridium perfringens, Campylobacter.
Prevención de película biológica
Reducción del pH, Mejora de la digestibilidad de proteínas y fósforo, Disminución de la diarrea, Mejora en la calidad de la cama, Incremento de la ingesta de pienso.
Suscribete ahora a la revista técnica porcina
AUTORES
Desarrollo de indicadores fisiológicos y conductuales de estado emocional positivo en cerdos
Emma Fàbrega i Romans Liza Moscovice Marc BagariaEs momento de atraer y retener talento
Laura Pérez SalaForo Porcino Aragón INTERPORC
Influencia del método de aplicación de productos de hierro y anticoccidios en el comportamiento de lechones lactantes y en los factores asociados a estrés
Antonio González-Bulnes Daniel Sperling Gonzalo Díaz-Amor Hamadi Karembe Joaquín Morales María RodríguezVentilación en granjas porcinas: clave para el bienestar y la productividad
Laura BatistaPRAN 2025-2027: Una estrategia integral para preservar la salud pública, animal y ambiental
Cristiana Teixeira Justo Cristina Muñoz Madero María Vilar AresBioseguridad porcina 360°: de las barreras visibles a los reservorios ocultos – Parte I
David García PáezNutrición porcina: aliado clave en la evolución de la industria
Cerdas hiperprolíficas: ¿pueden coexistir el rendimiento y el bienestar?
El papel del enriquecimiento ambiental en la mejora del bienestar y rendimiento zootécnico en porcino
Digitalización, predicción y compromiso con la sociedad en la producción porcina
Cristina Sanmartín Ruiz Gonzalo Cano García José Ángel Fernández Ortiz Monse SuarezEvolución en la alimentación de los destetes: el sistema iQon Multifast™ lo hace posible
Vacunación: herramienta decisiva en la prevención del PRRS y Circovirus Porcino tipo 2
Acidificación del agua en transición porcina: salud intestinal y producción
Decálogo para alcanzar la excelencia en granjas de producción porcina
Anabel Fernández Bravo Andrea Martínez Martínez Elena Goyena Salgado Emilio José Ruiz Fernández José Manuel Pinto Carrasco Manuel Toledo Castillo Simón García LegazProteger frente al virus PRRS – Cepa Rosalia
Clara Farré Ester Maiques Javier Abadías Jonás Hernández