La reducción del flujo sanguíneo a los órganos internos conlleva una peor oxigenación (hipoxia) y menos disponibilidad de energía para los enterocitos de la mucosa intestinal.
No hay términos de la taxonomía "paises" asociados a este post.
Nuevas estrategias nutricionales para minimizar la hiperpermeabilidad intestinal.
La mayoría de productores están familiarizados con las consecuencias económicas derivadas del estrés por calor, habiéndose estimado que en el sector porcino los costes asociados a este fenómeno superan los 900 millones de dólares (St. Pierre et al., 2003; Pollman, 2010). Por ello, no es sorprendente que las inversiones en sistemas de control ambiental sean cada vez más frecuentes.
Cascada de eventos del estrés por calor
El estrés por calor provoca en los animales una reducción en la ingesta de alimento seco, habiéndose sugerido que se trata de un mecanismo para reducir el calor metabólico (Baumgard and Rhoads, 2012).
No obstante, la reducción en la ingesta de alimento solo explica parcialmente por qué los animales sometidos a estrés térmico tienen un peor rendimiento (Wheelock et al, 2010), existiendo otras razones como cambios en el flujo sanguíneo y en la disponibilidad de oxígeno y energía.
Cuando los animales se someten a estrés por calor, el flujo sanguíneo se redirige desde los tejidos viscerales a la piel, con el fin de favorecer la disipación de calor.
La reducción del flujo sanguíneo a los órganos internos conlleva una peor oxigenación (hipoxia) y menos disponibilidad de energía para los enterocitos de la mucosa intestinal.
Adicionalmente, los animales incrementan su frecuencia respiratoria con el fin de enfriarse, produciéndose un aumento en la producción de radicales libres de oxígeno y de nitrógeno, que debilitan e incluso destruyen las uniones estrechas del epitelio intestinal (hebras proteicas llamadas claudinas y ocludinas).
Un estrés térmico severo conduce a cambios morfológicos en la mucosa intestinal:
El intestino puede volverse más vulnerable al transporte paracelular de lipopolisacáridos (LPS) o endotoxinas, atravesando éstas la pared intestinal (Hall et al., 2001). Esto se conoce comúnmente como “intestino permeable” (Figura 1).
Figura 1. Efecto del estrés por calor sobre la permeabilidad intestinal.
Adaptado de Baumgard et al. 2012. Impact of climate change on livestock production. Pag. 413-468. Cap. 15. Environmental Stress and Amelioration in Livestock Production. Eds. V. Seijan et al., Springer-Verlag Berlin Heidelberg.
La hiperpermeabilidad intestinal también puede explicarse por el incremento de la secreción de insulina durante el estrés por calor, a pesar de la disminución del consumo de alimento (Rhoads et al., 2009).
Algunos investigadores han sugerido que el aumento del nivel de insulina es una adaptación destinada a la conservación de glucosa, de forma que esté a disposición del sistema inmunitario activado para afrontar los efectos del transporte paracelular de endotoxinas.
Requerimientos de Zinc para la Integridad Intestinal
Numerosos estudios científicos demuestran que el zinc es un elemento clave para el mantenimiento de la integridad de la barrera intestinal. Si bien su mecanismo de acción no se conoce por completo, se ha demostrado que:
Efectos del Zinc en Porcino
Investigaciones recientes llevadas a cabo en la Universidad Estatal de Iowa (EE.UU.) evidencian que el estrés por calor contribuye al aumento de la permeabilidad intestinal y que suministrar una forma específica de zinc (complejo zinc – aminoácido, Availa-Zn) permite mitigar sus efectos en cerdos (Pearce et al., 2015).
DISEÑO EXPERIMENTAL
En su estudio, 32 cerdos híbridos (63 Kg) se repartieron aleatoriamente en cuatro grupos de tratamiento:
*Cuando hacemos un ensayo con calor, sabemos que los animales reducirán su consumo de alimento por la temperatura. Para discriminar los efectos puramente debidos a esta restricción térmica del efecto del calor “per se” sobre el metabolismo, hacemos un grupo de animales en condiciones termoneutras (sin calor) al que damos de comer la misma cantidad que comerán los sometidos a estrés térmico.
Los investigadores evaluaron la permeabilidad ileal en los cerdos muestreados, midiendo Coeficiente de Permeabilidad Aparente de Dextrano (APP) y la resistencia transepitelial (TER)
RESULTADOS
Tal y como se esperaba, someter a los cerdos a condiciones de estrés térmico provocó un incremento de la temperatura rectal.
PERMEABILIDAD INTESTINAL
Este hallazgo es indicativo de un evento de estrés térmico (HS-CON) o un periodo de restricción alimentaria (PFTN-CON) incrementan el riesgo de permeabilidad intestinal
ENDOTOXINAS
LBP es una proteína de fase aguda que se fija al LPS (lipopolisacárido) bacteriano induciendo una respuesta inmunitaria, al presentarlo a los receptores de superficie que destruyen las endotoxinas.
MORFOLOGÍA INTESTINAL
La observación de las alteraciones físicas en la morfología intestinal reveló interesantes cambios que se muestran en la Figura 2.
Mientras que los cerdos sometidos a condiciones termoneutras (TN-CON) –Figura 2A– mantenían unas vellosidades largas y finas, en los cerdos del grupo PFTN-CON sometidos a estrés térmico –Figura 2B– hubo un ensanchamiento y acortamiento considerable de las vellosidades.
Las alteraciones morfológicas del epitelio intestinal fueron más acentuadas en los cerdos del grupo HS-CON, pudiéndose observar en la Figura 2C las zonas con intensa destrucción de enterocitos (flechas).
En el caso del grupo HS-ZnAA –Figura 2D–, la incorporación de zinc en condiciones de estrés térmico condujo a una reducción de los daños celulares, pudiéndose observar una altura y grosor de las vellosidades similar al grupo TN-CON.
Figura 2. Alteraciones morfológicas en el epitelio intestinal de cerdos.
A. Grupo Control Termoneutro Ad libitum (TN-CON): 120 ppm Zn de ZnSO4
B. Grupo Control Termoneutro – Alimentación en paralelo (PFTN-CON): 120 ppm Zn de ZnSO4
C. Grupo Control Estrés térmico Ad libitum (HS-CON): 120 ppm Zn de ZnSO4
D. Grupo Estrés Térmico – Availa Zn (HS-ZnAA): 60 ppm Zn de ZnSO4 + 60 ppm 60 ppm de Zn del complejo zinc – aminoácido
Conclusiones
El estrés por calor es un problema ampliamente extendido, que la mayoría de productores deben gestionar, siendo esencial que en épocas calurosas se establezcan las medidas necesarias para prevenir los efectos a largo plazo que tiene el estrés térmico sobre los animales.
Los resultados de este estudio demuestran que la incorporación del complejo zinc – aminoácido (Availa-Zn de Zinpro Corp.) como parte de una estrategia nutricional para enriquecer la dieta con zinc contribuye a mantener unos animales saludables, reduciéndose el riesgo de hiperpermeabilidad intestinal en condiciones de estrés térmico.
Suscribete ahora a la revista técnica porcina
AUTORES
Desarrollo de indicadores fisiológicos y conductuales de estado emocional positivo en cerdos
Emma Fàbrega i Romans Liza Moscovice Marc BagariaEs momento de atraer y retener talento
Laura Pérez SalaForo Porcino Aragón INTERPORC
Influencia del método de aplicación de productos de hierro y anticoccidios en el comportamiento de lechones lactantes y en los factores asociados a estrés
Antonio González-Bulnes Daniel Sperling Gonzalo Díaz-Amor Hamadi Karembe Joaquín Morales María RodríguezVentilación en granjas porcinas: clave para el bienestar y la productividad
Laura BatistaPRAN 2025-2027: Una estrategia integral para preservar la salud pública, animal y ambiental
Cristiana Teixeira Justo Cristina Muñoz Madero María Vilar AresBioseguridad porcina 360°: de las barreras visibles a los reservorios ocultos – Parte I
David García PáezNutrición porcina: aliado clave en la evolución de la industria
Cerdas hiperprolíficas: ¿pueden coexistir el rendimiento y el bienestar?
El papel del enriquecimiento ambiental en la mejora del bienestar y rendimiento zootécnico en porcino
Digitalización, predicción y compromiso con la sociedad en la producción porcina
Cristina Sanmartín Ruiz Gonzalo Cano García José Ángel Fernández Ortiz Monse SuarezEvolución en la alimentación de los destetes: el sistema iQon Multifast™ lo hace posible
Vacunación: herramienta decisiva en la prevención del PRRS y Circovirus Porcino tipo 2
Acidificación del agua en transición porcina: salud intestinal y producción
Decálogo para alcanzar la excelencia en granjas de producción porcina
Anabel Fernández Bravo Andrea Martínez Martínez Elena Goyena Salgado Emilio José Ruiz Fernández José Manuel Pinto Carrasco Manuel Toledo Castillo Simón García LegazProteger frente al virus PRRS – Cepa Rosalia
Clara Farré Ester Maiques Javier Abadías Jonás Hernández